94 research outputs found

    ВлияниС ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ†ΠΈΠΈ Ρ€Π°Π΄ΠΈΠ°Π»ΡŒΠ½ΠΎ-сдвиговой ΠΏΡ€ΠΎΠΊΠ°Ρ‚ΠΊΠΈ ΠΈ Ρ€ΠΎΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ ΠΊΠΎΠ²ΠΊΠΈ Π½Π° напряТСнно-Π΄Π΅Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ΅ состояниС ΠΏΡ€ΡƒΡ‚ΠΊΠΎΠ²ΠΎΠΉ Π·Π°Π³ΠΎΡ‚ΠΎΠ²ΠΊΠΈ ΠΌΠ°Π»ΠΎΠ³ΠΎ Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€Π° ΠΈΠ· Ρ‚ΠΈΡ‚Π°Π½ΠΎΠ²Ρ‹Ρ… сплавов

    Get PDF
    The paper focuses on the finite element method used to simulate the stress-strain state of a small-diameter bar stock during hot-forming in a combination of radial shear rolling (RSR) and rotary forging (RF). Simulation was carried out using the rheological model of the Ti-6Al-4V titanium-based alloy with the QForm VX software. A combination of radial shear rolling of a workpiece with a diameter of 15 mm to 12 mm bar in one pass and subsequent rotary forging in one, two and three passes to obtain bars with diameters 11, 10 and 8 mm is simulated. During the simulation, step-by-step accumulation of plastic deformation was taken into account in the conditions of its nonuniform distribution. The intermediate and finite fields of plastic deformation, strain rate and average stress are obtained. It is shown that plastic deformation distribution after RSR has an expressed gradient with a maximum value (3 or more) at the periphery of the cross-section and a minimum value (about 1) at the center. As a result of RF, even with small reductions, the stress-strain state becomes much more uniform compared with a workpiece of the same diameter after radial shear rolling only. In addition, residual tensile stresses due to compressive stresses during rotary forging are reduced. Direct experimental testing of the combined deformation method was carried out for a promising medical-grade Ti-Zr-Nb shape memory alloy when manufacturing 7-8 mm diameter rods in experimental production conditions. Qualitative confirmation of modeling results is obtained by metallographic analysis. It is shown that the combination of radial shear rolling and rotary forging is promising for creating industrial technologies for the manufacture of small-diameter rods with a highly uniform finely-dispersed structure.Π Π°Π±ΠΎΡ‚Π° посвящСна ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎ-элСмСнтному ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡŽ напряТСнно-Π΄Π΅Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ состояния ΠΏΡ€ΡƒΡ‚ΠΊΠΎΠ²ΠΎΠΉ Π·Π°Π³ΠΎΡ‚ΠΎΠ²ΠΊΠΈ ΠΌΠ°Π»ΠΎΠ³ΠΎ Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€Π° ΠΏΡ€ΠΈ горячСй ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ Π² ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ†ΠΈΠΈ Ρ€Π°Π΄ΠΈΠ°Π»ΡŒΠ½ΠΎ-сдвиговой ΠΏΡ€ΠΎΠΊΠ°Ρ‚ΠΊΠΈ (РБП) ΠΈ Ρ€ΠΎΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ ΠΊΠΎΠ²ΠΊΠΈ (РК). ΠœΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ΠΎ с использованиСм рСологичСской ΠΌΠΎΠ΄Π΅Π»ΠΈ Ρ‚ΠΈΡ‚Π°Π½ΠΎΠ²ΠΎΠ³ΠΎ сплава Tiβ€”6Alβ€”4V с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΡ‹ QForm VX. Π‘ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΎ сочСтаниС Ρ€Π°Π΄ΠΈΠ°Π»ΡŒΠ½ΠΎ-сдвиговой ΠΏΡ€ΠΎΠΊΠ°Ρ‚ΠΊΠΈ Π·Π° 1 ΠΏΡ€ΠΎΡ…ΠΎΠ΄ Π·Π°Π³ΠΎΡ‚ΠΎΠ²ΠΊΠΈ Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€ΠΎΠΌ 15 ΠΌΠΌ Π½Π° ΠΏΡ€ΡƒΡ‚ΠΎΠΊ Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€ΠΎΠΌ 12 ΠΌΠΌ ΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΉ Ρ€ΠΎΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ ΠΊΠΎΠ²ΠΊΠΈ Π² 1, 2 ΠΈ 3 ΠΏΡ€ΠΎΡ…ΠΎΠ΄Π° с ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ΠΌ ΠΏΡ€ΡƒΡ‚ΠΊΠΎΠ² Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ 11, 10 ΠΈ 8 ΠΌΠΌ. Π£Ρ‡ΠΈΡ‚Ρ‹Π²Π°Π»ΠΎΡΡŒ ΠΏΠΎΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ΅ Π½Π°ΠΊΠΎΠΏΠ»Π΅Π½ΠΈΠ΅ пластичСской Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ Π² условиях нСравномСрности Π΅Π΅ распрСдСлСния. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΡ‡Π½Ρ‹Π΅ ΠΈ ΠΊΠΎΠ½Π΅Ρ‡Π½Ρ‹Π΅ поля пластичСской Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ, скорости Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ ΠΈ срСднСго напряТСния. Показано, Ρ‡Ρ‚ΠΎ распрСдСлСниС пластичСской Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ послС РБП ΠΈΠΌΠ΅Π΅Ρ‚ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½Π½ΡƒΡŽ Π³Ρ€Π°Π΄ΠΈΠ΅Π½Ρ‚Π½ΠΎΡΡ‚ΡŒ с ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ΠΌ (3 ΠΈ Π±ΠΎΠ»Π΅Π΅) Π½Π° ΠΏΠ΅Ρ€ΠΈΡ„Π΅Ρ€ΠΈΠΈ сСчСния ΠΈ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌ (ΠΎΠΊΠΎΠ»ΠΎ 1) Π² Ρ†Π΅Π½Ρ‚Ρ€Π΅. Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ РК Π΄Π°ΠΆΠ΅ с нСбольшими обТатиями напряТСнно-Π΄Π΅Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ΅ состояниС становится сущСствСнно Π±ΠΎΠ»Π΅Π΅ ΠΎΠ΄Π½ΠΎΡ€ΠΎΠ΄Π½Ρ‹ΠΌ ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с Π·Π°Π³ΠΎΡ‚ΠΎΠ²ΠΊΠΎΠΉ Ρ‚Π°ΠΊΠΎΠ³ΠΎ ΠΆΠ΅ Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€Π° Ρ‚ΠΎΠ»ΡŒΠΊΠΎ послС Ρ€Π°Π΄ΠΈΠ°Π»ΡŒΠ½ΠΎ-сдвиговой ΠΏΡ€ΠΎΠΊΠ°Ρ‚ΠΊΠΈ. ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°ΡŽΡ‚ΡΡ остаточныС напряТСния растяТСния ΠΈΠ·-Π·Π° ΡΠΆΠΈΠΌΠ°ΡŽΡ‰ΠΈΡ… напряТСний ΠΏΡ€ΠΈ Ρ€ΠΎΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ ΠΊΠΎΠ²ΠΊΠ΅. ΠŸΡ€ΡΠΌΠΎΠ΅ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠ΅ ΠΎΠΏΡ€ΠΎΠ±ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ способа Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ для пСрспСктивного сплава Tiβ€”Zrβ€”Nb с ΠΏΠ°ΠΌΡΡ‚ΡŒΡŽ Ρ„ΠΎΡ€ΠΌΡ‹ мСдицинского назначСния ΠΏΡ€ΠΈ ΠΈΠ·Π³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½ΠΈΠΈ ΠΏΡ€ΡƒΡ‚ΠΊΠΎΠ² Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€ΠΎΠΌ 7β€”8 ΠΌΠΌ Π² условиях ΠΎΠΏΡ‹Ρ‚Π½ΠΎ-ΠΏΡ€ΠΎΠΌΡ‹ΡˆΠ»Π΅Π½Π½ΠΎΠ³ΠΎ производства. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ΠΎ качСствСнноС ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ΠΈΠ΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² модСлирования мСталлографичСским Π°Π½Π°Π»ΠΈΠ·ΠΎΠΌ. Показана ΠΏΠ΅Ρ€ΡΠΏΠ΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ сочСтания Ρ€Π°Π΄ΠΈΠ°Π»ΡŒΠ½ΠΎ-сдвиговой ΠΏΡ€ΠΎΠΊΠ°Ρ‚ΠΊΠΈ ΠΈ Ρ€ΠΎΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ ΠΊΠΎΠ²ΠΊΠΈ для создания ΠΈΠ½Π΄ΡƒΡΡ‚Ρ€ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ изготовлСния ΠΏΡ€ΡƒΡ‚ΠΊΠΎΠ² ΠΌΠ°Π»ΠΎΠ³ΠΎ Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€Π° с высокой ΠΎΠ΄Π½ΠΎΡ€ΠΎΠ΄Π½ΠΎΡΡ‚ΡŒΡŽ мСлкодиспСрсной структуры

    ModΓ©lisation d'un actuateur AMF Γ  action rapide

    No full text

    Tensorial generalization of a phenomenological material law for shape memory alloys

    No full text

    Calculation of shape recovery in textured SM material

    No full text
    The aim of this work is to create a computer model predicting the strain to be accumulated and then recovered by nitinol superelastic textured sheets upon reversible martensitic transformation. Using an experimental orientation distribution function (ODF), connecting the microscale (grain) and macroscale (semiproduct) levels, the model calculations are realized through the following steps: (1) tensile loading is consecutively applied to the shape memory nitinol sheet in all directions from those rolling to transverse; (2) an external stress is transferred to micro (each grain) level, where the crystallographic strain is obtained by minimizing the total strain energy; (3) then the strains accumulated in each grain are translated backwards to the macrolevel through the ODF: to obtain the macrostrain accumulated by the whole sheet, a weighted summation of grain-accumulated strains is used by assuming the input from each grain orientation to be proportional to the corresponding ODF coefficient. This approach is validated for isotropic (constant ODF) and for normally anisotropic (typical experimental ODF) cases. It is also shown how the sharpening of texture gradually increases the strain anisotropy until the single crystal strain distribution of the unique grain orientation appears in the sheet plane
    • …
    corecore